The absolute Cesàro summability and the Littlewood-Paley function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized absolute Cesàro summability

In this paper, a main theorem dealing with | C, 1 |k summability factors has been generalized under more weaker conditions for | C,α, β |k summability factors. This theorem also includes some new results. Mathematics Subject Classification 2000: 40D15, 40F05, 40G05, 40G99.

متن کامل

Factors for generalized absolute Cesàro summability

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence cn and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Obviously every increasing sequence is almost increasing but the converse need not be true as can be seen from the example bn = ne(−1) n . Let ∑ an be a given infinite series with partial sums (sn). We denote by tn n-th...

متن کامل

Littlewood–Paley Inequailty: A Survey

Let Sωf = ∫ ω f̂(ξ)e ixξ dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood Paley inequality [28] states that for any collection of disjoint intervals Ω, we have ∥∥ [∑ ω∈Ω |Sωf | 1/2∥∥ p . ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multipliers.

متن کامل

Littlewood–Paley Inequality: A Survey

Let Sωf = ∫ ω f̂(ξ)e ixξ dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood Paley inequality [31] states that for any collection of disjoint intervals Ω, we have ∥∥ [∑ ω∈Ω |Sωf | 1/2∥∥ p . ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multipliers.

متن کامل

Singular Integrals and Littlewood–Paley Operators

We prove mixed Ap-Ar inequalities for several basic singular integrals, Littlewood–Paley operators, and the vector-valued maximal function. Our key point is that r can be taken arbitrarily big. Hence, such inequalities are close in spirit to those obtained recently in the works by T. Hytönen and C. Pérez, and M. Lacey. On one hand, the “Ap-A∞” constant in these works involves two independent su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1972

ISSN: 0040-8735

DOI: 10.2748/tmj/1178241532